A scene change detection framework for multi-temporal very high resolution remote sensing images

نویسندگان

  • Chen Wu
  • Lefei Zhang
  • Liangpei Zhang
چکیده

The technology of computer vision and image processing is attracting more and more attentions in recent years, and has been applied in many research areas like remote sensing image analysis. Change detection with multi-temporal remote sensing images is very important for the dynamic analysis of landscape variations. The abundant spatial information offered by very high resolution (VHR) images makes it possible to identify the semantic classes of image scenes. Compared with the traditional approaches, scene change detection can provide a new point of view for the semantic interpretation of land-use transitions. In this paper, for the first time, we explore a scene change detection framework for VHR images, with a bag-of-visual-words (BOVW) model and classification-based methods. Image scenes are represented by a word frequency with three kinds of multi-temporal learned 2 dictionary, i.e., the separate dictionary, the stacked dictionary, and the union dictionary. Three features (multispectral raw pixel; mean and standard deviation; and SIFT) and their combinations were tested in scene change detection. Post-classification and compound classification were evaluated for their performances in the “from-to” change results. Two multi-temporal scene datasets were used to quantitatively evaluate the proposed scene change detection approach. The results indicate that the proposed scene change detection framework can obtain a satisfactory accuracy and can effectively analyze land-use changes, from a semantic point of view.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining of Magnitude and Direction of Change Indices to Unsupervised Change Detection in Multitemporal Multispectral Remote Sensing Images

In remote sensing, image-based change detection techniques, analyze two images acquired over the same area at different times t1 and t2 to identify the changes occurred on the Earth's surface. Change detection approaches are mainly categorized as supervised and unsupervised. Generating the change index is a key step for change detection in multi-temporal remote sensing images. Unsupervised chan...

متن کامل

vegetation change detection using multi-temporal remotly sensed data during recent three decades by artificial intelligence technique (Case study: protected area of Bashgol)

Quantitative and qualitative information of vegetation and its changes in duration of time as a basic foundation of determination of  habitat quality, priority of protected area and also determination of price of ecosystem services in order to optimum management of natural resources and sustainable development is a very important technical point. In other hand, researchers are interested in rem...

متن کامل

Detecting Damaged Building Regions Based on Semantic Scene Change from Multi-Temporal High-Resolution Remote Sensing Images

The detection of damaged building regions is crucial to emergency response actions and rescue work after a disaster. Change detection methods using multi-temporal remote sensing images are widely used for this purpose. Differing from traditional methods based on change detection for damaged building regions, semantic scene change can provide a new point of view since it can indicate the land-us...

متن کامل

Palarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm

Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...

متن کامل

Land Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing

  The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing

دوره 124  شماره 

صفحات  -

تاریخ انتشار 2016